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1.  PRELIMINARIES AND INTRODUCTION 

In this section we begin by some properties of Fourier transform.  Let  p  be any real number, 1p  , and  

( , )pL     the vector space of all complex valued functions ( )f x  of all real variable x , x  , such 

that f is lebesgue measurable, and  

 

1

( ) . 1.1
p

p

p
f f x dx





 
   
 
  

We call the number 
p

f  the pL -norm of f . 

Now if 1( ) ( )f x L x    and  any real number, we define the Fourier transform of f by: 

 ˆ ( ) ( ) . 1.2i xf f x e dx




    

And say that ˆf is the Fourier transform of 1 ( , )f L   .We write symbolical        

   ˆ ˆ ( ) ( )f F f or f v F f x  . 

In the special case when f is even, ( ) ( )f x f x   for all real values of x , (1. 2) take the form 

 
0

ˆ ( ) 2 ( )cos . 1.3f f x xdx 


   

If f is odd, ( ) ( )f x f x    for all real values of x , (1. 3) take the form 
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 
0

ˆ ( ) 2 ( )sin . 1.4i f f x xdx 


     

Now we give some basic properties of Fourier transform of functions in 1 ( , )L    (see [1-8]).   

A) If 1( ) ( )f x L x   , than ˆf is bounded on ( , )  , since for 

all real , we have  

                      
1

ˆ ( ) ( ) . 1.5f f x dx f




       

where 
1

f  denotes the 1L -norm of f , so that 

 
1

ˆsup ( ) . 1.6
x

f f
 

    

B) If 1( ) ( )f x L x   , than ˆ( )f   is continuous on ( , )  , for if h is a real number, 0h  , then  

 

( )

1

ˆ ˆ( ) ( ) ( ) ( )

( ) ( 1)

( ) . 1.7

i h x i x

i x ihx

ihx

f h f f x e f x e dx

f x e e dx

f x e dx o as h o

 



 
















     

 

  







 

and hence ˆf is continuous at point  , Where    .  

c)The operator ˆf f is linear in the sense that  

 1 1 2 2 1 1 2 2
ˆ ˆ( ) ( ) ( )c f c f c f c f  


    

where 1 2,c c are complex numbers and 1 2 1, ( , )f f L   .   

  D) Let h be a fixed real number, and 1( ) ( )f x L x   . Then the Fourier transform of ( )f x h , is the 

translation of  

( )f x  by ,h  equals ˆ( ) i hf e  
.  

E) Let t be a fixed real number and 1( ) ( )f x L x   . Then the Fourier transform of ( ) itxf x e is 

ˆ( )f t  .       

F) Let  be a fixed real number, 0  , and 1( ) ( )f x L x   . Then the Fourier transform of ( )f x  is  

1 ˆ( )f


 
. 

G) If f denotes the complex conjugate of f and 1 ( , )f L   , then the Fourier transform  of  ( )f x  is 

ˆ( )f   since the complex conjugate of    
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                   ( ) i xf x e dx





  equals  ˆ( ).f   

H) If  1 ( , )f L    and  1 ( , )nf L    for n = 1,2,………, and   

                         
1

0, ,nf f as n   then we have     

                    ˆ ˆlim ( ) ( ). (1.8)n
x

f f 


  

uniformly for   . In effect, by (1.5) and (1.8), we have  

                           
1

ˆ ˆsup ( ) ( ) .n nf f f f


 
 

    

J) If 1 2 1, ( , )f f L   , then  

        1 2 1 2
ˆ ˆ( ) ( ) ( ) ( ) . (1.9)f y f y dy f y f y dy

 

 

   

which is called composition rule. 

K) B. Muckenhoupt  posed in [10], the problem of characterizing those non-negatives  functions u and v ,which for 

some p , 1 p   ,the inequality   

      ˆ( ) ( ) ( ) ( )
p p

f x u x dx c f x v x dx

 

 

   , 

Holds for any f , and in [11] deal only with the case where either 1u   or 1v  , finding that when 1v   , 

1 2p  , a    

Necessary condition is that  for any 0r   

        

1

( 1)

1( )

b br kk
p

k rk

u x dx cr






  
       

     

  where 
2

2
b

p



, and that a sufficient condition      ( 1 , 1 )v p   is that for any measurable set E , we have : 

1
( ) .

p

E

u x dx c E


  

Many authors studied this subject, for instance the reader should refer to [1-9]. 

2. THE MAIN RESULTS 

In this section, we prove the main theorems  

Theorem 2.1: 

      Let  1( ) ( )f x L x    and 
1( ) ( )mx f x L x   , 02where m is a positive integer. Then  

ˆ( )f   is a continuously differentiable m times for x  , and we have 

 
( )

( )ˆ ( ) ( ) ( )
m

m i xf ix f x e dx




    . 

So that  
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 
( )

( )ˆ ( ) ( ) ( )
m

mf ix f x dx




  . 

Proof: 

We are going to use induction on m  , we assume that  the result is true for all n  such that   1 n m  . 

Consider the function 

 
( )

ˆˆ ( ) ( ) ( ) . (2.1)
n

i xF f F x e dx 




    

And also  

1
( ) ( )

ihx

h

e
F x F x

h

 
  

 
  

for h real and 0h   .  Then 

ˆ ˆ( ) ( )
( ) . (2.2)h

F h F
F

h

 


 
  

Now  

0 0

0

1
lim ( ) lim ( )

1
( ) lim

( ). (2.3)

ihx

h
h h

ihx

h

e
F x F x

h

e
F x

h

ixF x

 



 
  

 

 
  

 



                                                 

So   ( ) ( )hF x ix F x point wisely, for almost every x , as  0h  and     

1
( ) ( )

1
( ) . (2.4)

ihx

h

ihx

e
F x F x

h

e
F x

h

 
  

 




 

Note that     

1
. (2.5)

ihxe
x

h


  

Let  ( ) 1ithM t e  . By applying Mean-Value theorem on ( )M t ,  0,1t  , we have  

1
( ) .

iht
ith e

M t ihe
x


    

Then  

1iht
ixte

ixe x
x


  . 

We drive from (2.4) and by hypothesis that 

1( ) ( ) ( , )hF x x F x L     
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Hence 

1

( ) ( ) ( ) ( )

2 ( ) ( , )

h hF x ixF x F x ixF x

x F x L

  

   
 

By Riemann-Lebesgu's Theorem on dominated convergence, we have  

( ) ( )hF x ixF x in the 1L  norm, that is  

1
0 0.hF ixF as h     

By property (g) we get 

 ˆ ( ) ( ) .i x

hF x ixF x e dx





    

Uniformly convergent. 

The last integral is a bounded continuous function of   ,     . 

Now 

                            
0 0

ˆ ˆ( ) ( )
lim ( ) limh
h h

F h F
F

h

 


 

 
  

 

 

 

'

'
( )

( 1)

ˆ( )( )

ˆ ( )

ˆ ( ).

n

n

F

f

f










   
 



. 

Hence                         

 

 

( 1)
'

( 1)

ˆˆ( ) ( ) ( )

( ) ( ) , 1 1.

n

n i x

F f

ix f x e dx n m

 










   
 

this shows that the result is true for any positive integer m . 

Therefore  

                             
( )

( )ˆ ( ) ( ) ( ) .
m

m i xf ix f x e dx




   

However 

   
( )

( )ˆ ( ) ( ) ( )
m

m i xf ix f x e dx




   

                            
( )( ) ( ) .m i xix f x e dx





   

                     
( )( ) ( ) .mix f x dx





   

Hence the proof is complete. ■ 
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Theorem 2.2: 

Let 1( ) ( )f x L x   , f  is continuously differentiable m times and   

( )

1( ) ( ), 0 .rf x L x for r m       

Then 

   ˆ( ) ( ) ( )
m mf i f  



   

so that  

( )ˆ( ) ( ) .m mf f x dx 




   

Proof : 

First, we calculate the formula ( ) i xf x e dx





 .  

Let   be real number, For  R > 0 , 0  , we have  

'( ) ( ) ( )

RR Ri x i x
i x

R RR

e e
f x e dx f x f x dx

i i

 


 

 

 

 
  
 

   

Now ( )f x  tends to finite limits as  x  , then 

' '

1

0

( ) (0) ( ) ( , )

x

f x f f x dx and f L     . 

So that  

'( ) (0) ( ) . (2.6)

R

R

f f f t dt


     

But ( ) 0f   , hence letting  R   in (2.1), we have  

'( ) ( ) 0. (2.7)
i x

i x e
f x e dx f x dx

i


 



 

 

     

By the same argument, we have  

           
( )( ) ( 1) ( ) 0.

(2.8)

i x
i x m m

m

e
f x e dx f x dx

i


 



 

 

   
 

this implies that  

 
  ˆ( ) ( ) ( ) 0.
mmi f f for   



    



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 3, Issue 3, pp: (18-29), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 24 
Novelty Journals 

 

 This holds also for 0   by continuity (since the left hand side is zero and the right side is  

( ) ( ) 0mf x dx





 ).  

Now  

( )

( )

1

ˆ ˆ( ) ( ) ( ) ( )

. (2.9)

m m m

m

ix f f f x d

f

  




  

  


 

By Riemann-Lebesgue lemma (which says that the Fourier transform of ƒ tends to 0 as z tends to infinity) and by (2.9) 

also f is an arbitrary measurable function,  and since 
( )

1 ( , )mf L   , we conclude that 

1ˆ( ) 0
m

f as 


 
    

 
 

. 

Hence the proof is complete. ■ 

Theorem 2.3 : 

If  1
ˆ ( , )f L   , then the integral 

1 ˆ( )
2

i xf e d 








 defines a continuous function of x . 

Proof : 

Let 

1 ˆ( ) ( )
2

i xf x f e d 








  ,  

then consider  

1 ˆ( ) ( ) ( ) 1
2

i x i hf x h f f e e d   




 



       

( ) ( )

1 ˆ ( ) 1
2

1 ˆ ( ) 1 .
2

i x i h

i h

f x h f

f e e d

f e d

 





 


 




 









  

   

   





                                  

But 

1
ˆ ˆ( ) 1 2 ( ) ( , )i hf e f L       , 

and  

ˆ( ) 1 0 0i hf e as h     . 

For almost all  1 ( , )L    . It follows from Riemann-Lebesgue,s Theorem on dominated convergence that  

ˆ( ) 1 0 0i hf e d as h 






   ,  
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and hence f  is continuous function at the point x , where ( , )x    . Hence the proof is complete. ■ 

Remark 2.4: 

We indicate that if 1( ) ( )f x L x   , it dose note necessary that the Fourier transform ˆ( )f   belongs to 

1 ( )L     , we can see in the following example:  

Taking          

        

1 , 1

( )

0 , 1

for x

f x

for x

 


 
 

 

It is clearly that 1( ) ( )f x L x   , but for   any real,   , we have  

1

1

1

1

0

ˆ( ) ( )

2 cos

sin
2

sin
2 .

i x

i x

o

x

x

f f x e dx

e dx

x dx

x













































                                                                         

Note that here   1
ˆ( ) ( )f L      . 

Definition 2.1  :                                                                                                                 

We say that :f Y has a compact support, if f vanishes outside some compact subset of  , where Y, are 

topological spaces. 

Now apply [12] and theorem 2.1, we have the following theorem. 

Theorem 2.4 :                     

Let f has a compact support in C , and define 

 x C   : ( ) ( ) i xF f e dx 




  , 

 then ( )F   is analytic in C . 

Proof: 

Firstly we prove that ( )F   defines a continuous function. Suppose that 

supp [ , ]f R R  . Then x supp f , we have 
Ri xe e
   , so that if 0h  , then 

( ) ( ) ( 1) ( )i x i hF h F e e f x dx  




     

and note that, for small h , 
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( 1)

( 1) ( ) ( ) ( ) 0
Ri x i he e f x R h e f x
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which is integrable and so the dominated convergence theorem tells us that F is continuous. 

We now claim that F is analytic. For this let  

( ) ( ) ( )i xg ix e f x dx
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Note that g makes sense because f has compact support .To show that F is analytic 

we only need to show that 
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 . Note that for   

   x R , we have 
1

0

i he ihx

h

  
 , as 0h  , because ix is the derivative of  

   
i xe 

 at 0  . Moreover,  

( 1)1
( 1 ) ( ) ( )

Ri h i xe ihx e f x ce f x
h

  
    

which is integrable, and so the D.C.T tells us that, in fact 
( ) ( ) ( )

0
F h F g

h

    
 .  

Hence the proof is complete. ■ 

Now, we give some propriety in Schwartz's space S using the main result.   

3.   THE SPACE S OF L.SCHWARTZ 

We denote by S the Schwartz's space of all complex-valued functions ( )f x of real variable x , ,x    such 

that f is differentiable infinitely often, and for any integers p, q, 

( ) ( ) 0 0,p qx f x as x   

where 
( )qf denoting the 

thq derivative of  f . More details may be found in  13 17 . 

Proposition 3.1 :  

(1)  If  ( ),f S R then 
( ) ( )l mx f x is bounded, and belongs to 1 ( )L R , for any integers   , 0l m  . 

(2)  If  ,f s then  
( )

( ) ( )
m

lx f x  is bounded, and belongs to 1 ( )L R , for any integers , 0l m  . 

Proof: 

1) let f S , then for any integers , 0l m  , there is 0 0M   and 1 0M  such that    
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( )

0

l mx f M   .      (3.1) 

and  

2 ( )

1( )l mx f x M    .     (3.2) 

From (3.1) and (3.2), we have 

( )

12
( ) ( )

1

l m M
x f x L R

x
 


. 

2) This follows from (1), if we just use the rule for the differentiation of a product. Hence the proof is complete. ■ 

Theorem 3.2 : If  ( ) ( )f x S R , then the Fourier transform ˆ( )f   belongs    

to ( )S x    . 

Proof  Let  ( ) ( )f x S R , then by (1) of  proposition president  we have  
1( ) ( )lx f x L R , for any integer  0l  , 

so that  by  theorem 2.1 

 ˆ( )f   is differentiable infinitely often. 

On the other hand, for l and m are positive integers, then by theorem 2.1, we have 

 
( )

( )ˆ ( ) ( ) ( ) , (3.3)
l

l i xf ix f x e dx




    and by theorem 2.2, we have  

 

 

( )

( )
( )

ˆ ( )

( ) ( ) . (3.4)

l
m

m
l
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ix f x dx

 





 

 

Since  
( )

( )

1( ) ( )
m

lx f x L R , from (3.4) and by Riemann Lebeague Theorem, we conclude that  

 
( ) 1ˆ ( ) , 0. (3.5)
l

m
f o as 



 
  

 
 

. 

Hence the proof is complete. ■ 

Proposition 3.2 : Let ( ) ( )x S R  and 2 ( )f L R is such that 2( ) ( )x f x L R , and the Fourier transform is such 

that  2
ˆ( ) ( )f L R  , then 2 ( )g L R   such that  

         ( )( ( ) ( )) ( ) ( )
d

f x x x x dx g x x dx
dx

       

Proof :  Since 2( ) ( )x f x L R  is given, we only need to find 1 2 ( )g L R  satisfying 

1( ) ( ) ( ) ( ) , ( )
R R

d
f x x dx g x x dx S R

dx

 
    

 
  and then  

1 ( )g g x f x  will  solve the problem. If we set ̂  , as we can with ( )S R  uniquely determined,  

then 
^

( )
d

i
dx
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

 , so 
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where by definition 1 2 ( )g L R  is the function with Fourier transform equal to 
^

( )i   in 2 ( )L R  by assumption. 

Hence the proof is complete. ■ 

Proposition 3.3:  There exist an element ( )f S R  with 
2

1
R

f dx  , and    

          ( ) 0 , .k

R

x f x dx k   

Proof:  If ( )f S R , then it's Fourier transform is Schwartz and conversely. We also know that  

ˆ(0) ( ) ( ) .
k

k k

k

R

d
f i x f x dx

d
    

Thus we just have to arrange that ˆf and all it's derivatives vanish at the origin. We do know that there is a non-trivial 

Schwartz function which vanishes outside the interval [1, 2] for instance. Taking this at the Fourier transform of  cf  and 

when choosing the positive constant so that 
2

1
L

f  , we get that 

( ) 0, .k

R

x f x dx k   

 Hence the proof is complete. ■ 

REFERENCES 

[1] K. Candrasekharan : Classical Fourier, Springer – Verlag , (1987) . 

[2] M. Ruzhansky: Introduction to pseudo- di erential operators January 21, (2014).  

[3] A.Gvisiani and A.Kirillov: Theorems and problems in Functional Analysis, translated by H.Mcfaden , Springer – 

Verlag, (1982). 

[4] H.TRIEBL: Anisotropic function spaces.I, Hardy’s inequality, decompositions, II, traces. Anal.Math. vol.10, 1984, 

53-77, 79-96. 

[5] L.GRAFAKOS: Classical and modern Fourier analysis, printice-Hall, 2008. 

[6] M.PINSKY. Introduction to Fourier analysis and Wavelets; Brooks/Cole 2002. 

[7] H.J.SCHMEISSER and W. SICKEL: 0n strong sum ability of multiple Fourier series and smoothness properties of 

functions. Anal. Math. vol.8, 1982, 57-70. 

[8] S.H. Kulkarni: Fourier transform of physical functions part 1- infinite Differentiability. Indian J.pure appl. Math., 

14(8), (1983), 980-993.  

[9] R.N. Bracewell: The Fourier transform and its applications. 3ed ed. Boston McGraw Hill, 2000. 



  ISSN 2394-9651 

International Journal of Novel Research in Physics Chemistry & Mathematics 
Vol. 3, Issue 3, pp: (18-29), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 29 
Novelty Journals 

 

[10] B. Muckenhoupt: Weighted norminequalities for classical operators,  Proc.Symp.in Pure Math., 34, part 1  (1979), 

69-83. 

[11] N.E. Aguilera, E.O. Harboure:  On the search for weighted norm inequalities for Fourier transform, Pacific J.Math., 

vol.104, No 1, (1983), 1-14. 

[12] Soon-Yeong Chung, Eun-Joung Kim: Identification of the support for the generalized functions, Novi Sad J. Math., 

Vol.30,No.1,(2004), 33-42. 

[13] A. Jeffrey: Hogan, Weighted norm inequalities for the Fourier transform on connected locally compact groups, 

Pacific J. Math., vol.131, No 2, (1988), 277-289. 

[14] N .Duchou and A. Kolesarova: Fourier transforms of vector-valued measures on a certain compact semigroup, 

Tatra Mt. Math.Publ. 24 (2002), 89-103.  

[15] E. STEIN and G. WEISS: Fourier Analysis An Introduction; Princeton University press 2003. 

[16] L. SCHWARTZ: Théorie des distributions, I, II, Hermann, Paris, 1958; 209. 

[17] G.R .WILSON: Fourier Series and Optical Transform Techniques in Contemporary optics, New York: Wiley 1995; 

352. 

 


